
librapid
Release 0.2.7

Toby Davis

Sep 11, 2021

CONTENTS

1 What LibRapid is 3

2 What LibRapid is NOT 5

3 Licencing 7

4 Installing the Package 9

5 Using LibRapid 11

6 Using the Documentation 13

7 Contents 15
7.1 LibRapid NDarray . 15
7.2 LibRapid Neural Network . 22

Index 23

i

ii

librapid, Release 0.2.7

LibRapid aims to provide fast and intuitive interface to mathematical functions and types, such as multi-dimensional
arrays and neural networks.

LibRapid hopes to provide a functionally and interactively consistant interface in both C++ and Python, allowing high
level code to run faster and more efficiently, while also ensuring low-level programs in C++ can be optimized in the
same way.

CONTENTS 1

https://github.com/Pencilcaseman/librapid/actions/workflows/wheels.yaml
https://librapid.readthedocs.io/en/latest/?badge=latest
https://pypi.python.org/pypi/librapid/
https://pypi.python.org/pypi/librapid/
https://pypi.python.org/pypi/librapid/
https://pypi.python.org/pypi/librapid/
https://discord.gg/cGxTFTgCAC

librapid, Release 0.2.7

2 CONTENTS

CHAPTER

ONE

WHAT LIBRAPID IS

LibRapid is a lightweight alternative to other popular python libraries, intended to be used in both C++ and Python,
with potential support for CUDA coming in the future. It is designed to be as easy to use as possible while still
supporting advanced functionality and high performance.

3

librapid, Release 0.2.7

4 Chapter 1. What LibRapid is

CHAPTER

TWO

WHAT LIBRAPID IS NOT

A replacement for the well-established Python and C++ libraries that already exist. It can be used in a wide range of
applications, but there are no guarantees that all functions perform exactly the correct calculations in all situations,
though increasing numbers of tests are being implemented, and any bugs discovered are fixed as quickly as possible.

5

librapid, Release 0.2.7

6 Chapter 2. What LibRapid is NOT

CHAPTER

THREE

LICENCING

LibRapid is produced under the Boost Software License, so you are free to use, reproduce, display,
distribute, execute and transmit the software, though this is subject to some conditions, which can
be found in full here: LibRapid License

7

https://github.com/Pencilcaseman/librapid/blob/master/LICENSE

librapid, Release 0.2.7

8 Chapter 3. Licencing

CHAPTER

FOUR

INSTALLING THE PACKAGE

To install the Python package, simply open a command line window and type

pip install librapid

To install the library for C++ useage simply download the code and either copy the files to your program directory,
or save them somewhere memorable (such as C:\opt\librapid) and add them to the include direcotires of your
project.

The simplest way to download the code is via Git, using the command

git clone https://github.com/Pencilcaseman/librapid.git

9

librapid, Release 0.2.7

10 Chapter 4. Installing the Package

CHAPTER

FIVE

USING LIBRAPID

Important: To use LibRapid in Python, a modern C++ compiler may be needed to compile the code during installa-
tion. To use LibRapid in a C++ program, a modern C++ compiler will definitely be needed.

LibRapid is intended to be incredibly easy to use in both C++ and Python. To include the library in one of your
projects, simply do the following:

Listing 1: For Python programs

import librapid

Listing 2: For C++ programs

#include <librapid/librapid.hpp>

11

librapid, Release 0.2.7

12 Chapter 5. Using LibRapid

CHAPTER

SIX

USING THE DOCUMENTATION

The documentation outlines the explicit declerations for the C++ functions themselves, which may be difficult to
understand for many users. Luckily, however, only a small portion of the function definitions is actually relevant to
most users.

For example, take the function definition below:

template<typename T>
inline double librapid::test_function(const test_struct &thing) const

It may appear complicated at first, but there are only a few key things to look out for. First, the name of the function
(test_function) will be the same in the Python and C++ libraries, except in Python, the function will be accessed
as librapid.test_function. Next, the arguments to the function are important to know, and should be self-
explanatory. In C++, the type can be seen in the function definition, and passing the same type should give error-free
code. In Python, however, things can be slightly different – often, Python values can be cast into equivelent C++ types,
though the types are not always clear. Below is a list of common datatypes that you may want to pass to functions:

Type of value C++ Datatype Python Datatype
List std::vector<...> list, tuple
Integer lr_int, int, long int
Dictionary std::map<a, b> dict

13

librapid, Release 0.2.7

14 Chapter 6. Using the Documentation

CHAPTER

SEVEN

CONTENTS

7.1 LibRapid NDarray

7.1.1 What is an NDarray?

An NDarray is a multi-dimensional, homogeneous collection of values which can be operated on in a variety of ways.

The simplest type of NDarray is a vector, which is a list of values. Another simple type of NDarray is a matrix, which
is a grid of values.

// This is a vector with 3 elements
[1 2 3]

// This is a 2x3 matrix
[[1 2 3]
[4 5 6]]

The LibRapid NDarray can store arrays of any dimension, though the default limit is 32 dimensions.

Warning: While it is possible to change the maximum number of dimensions an array can contain, it is not
recommended due to the extraordinary amount of memory that would be required to store such an array.

7.1.2 Why use an NDarray?

The LibRapid NDarray class implements extremely optimized and efficent algorithms for many mathematical opera-
tions, such as element-wise arithmetic, dot-products, transpositions and more.

Because of this optimization, they can be used in high-intensity situations, such as in the LibRapid neural network
library, without compromising the speed of the program or the range of functions available.

Additionally, when using LibRapid in C++, it is incredibly easy to manipulate the NDarray type to fit you needs, as it is
fully templated and works with a wide range of datatypes, with many functions supporting cross-datatype operations.

15

librapid, Release 0.2.7

7.1.3 How are the arrays stored?

The underlying memory of each array is stored in a contiguous memory block. To access the different elements of an
array, they also store the dimensions of the array, and a set of strides which specify how far through memory one must
move to increment by one value in a given axis.

The fact that the arrays are stored in this way means that many functions can be accelerated dramatically by reducing
the amount of data that must be transferred. For example, to transpose an array, the stride and extent are simply
reversed.

7.1.4 Documentation

Array Constructors

LibRapid arrays can be made in a wide variety of ways, allowing greater functionality and flexibility when using the
library.

Some of the constructors create entirely new data, where nothing is referencing it, while others create arrays that
reference the data of another, so changing a value in one will also change the value in the other.

When a new array is created with entirely new data, the memory itself is contiguous (i.e. in a single block) in memory,
meaning it’s incredibly fast to access and do calculations with.

Any function which takes a librapid ndarray object can also take a python list, tuple or scalar, which will be automat-
ically cast to the ndarray type. This makes your code more concise and accelerates development.

Hint: If you want to use an array that isn’t contiguous (e.g. it was reshaped or is part of a larger array), the clone()
function will copy the data, but make it optimal in memory, improving performance where applicable.

ndarray()

Warning: doxygenfunction: Cannot find function “librapid::basic_ndarray::basic_ndarray” in doxygen xml out-
put for project “librapid” from directory: ./doxygenoutput/xml

ndarray(shape)

Warning: doxygenfunction: Cannot find function “librapid::basic_ndarray::basic_ndarray” in doxygen xml out-
put for project “librapid” from directory: ./doxygenoutput/xml

ndarray(shape, fill)

Warning: doxygenfunction: Cannot find function “librapid::basic_ndarray::basic_ndarray” in doxygen xml out-
put for project “librapid” from directory: ./doxygenoutput/xml

16 Chapter 7. Contents

librapid, Release 0.2.7

ndarray(ndarray)

Warning: doxygenfunction: Cannot find function “librapid::basic_ndarray::basic_ndarray” in doxygen xml out-
put for project “librapid” from directory: ./doxygenoutput/xml

ndarray(data)

Warning: doxygenfunction: Cannot find function “librapid::basic_ndarray::basic_ndarray” in doxygen xml out-
put for project “librapid” from directory: ./doxygenoutput/xml

Warning: doxygenfunction: Cannot find function “librapid::basic_ndarray::from_data” in doxygen xml output
for project “librapid” from directory: ./doxygenoutput/xml

Warning: doxygenfunction: Cannot find function “librapid::basic_ndarray::from_data” in doxygen xml output
for project “librapid” from directory: ./doxygenoutput/xml

zeros_like, ones_like, random_like

Warning: doxygenfunction: Cannot find function “librapid::zeros_like” in doxygen xml output for project “li-
brapid” from directory: ./doxygenoutput/xml

Warning: doxygenfunction: Cannot find function “librapid::ones_like” in doxygen xml output for project “li-
brapid” from directory: ./doxygenoutput/xml

Warning: doxygenfunction: Cannot find function “librapid::random_like” in doxygen xml output for project
“librapid” from directory: ./doxygenoutput/xml

linear(start, stop, len)

Warning: doxygenfunction: Cannot find function “librapid::linear” in doxygen xml output for project “librapid”
from directory: ./doxygenoutput/xml

7.1. LibRapid NDarray 17

librapid, Release 0.2.7

range(start, stop, inc)

Warning: doxygenfunction: Cannot find function “librapid::range” in doxygen xml output for project “librapid”
from directory: ./doxygenoutput/xml

Array Arithmetic

Basic arithmetic is a key part of any array library, and these operations are often used extensively throughout programs.
For this reason, a lot of work has been done to optimise the unerlying routines that support the arithmetic operations
to make them as fast as possible. To make them even faster, LibRapid may use multiple threads to perform the
calculations if they are available.

In both the Python and C++ libraries, the arithmetic operators + - * / are all overloaded, allowing you to do things
such as (a + b) / c, though the following methods are also implemented:

1. add(a, b)

2. sub(a, b)

3. mul(a, b)

4. div(a, b)

How arithmetic operations work

Arithmetic operations on arrays are all performed element-wise, meaning the arrays must conform to specific rules
regarding their extents (see array_shapes)

For example, adding two arrays works as follows:

[1 2 3] + [4 5 6] = [5 7 9]
Because 1 + 4 = 5
and 2 + 5 = 7
and 3 + 6 = 9

Array extents and formats

Librapid provides differnent methods for adding two arrays, which vary based on the extents of the input arrays.

A full list of the arithmetic types is below:

18 Chapter 7. Contents

librapid, Release 0.2.7

Name Requirement Example
Exact match The arrays are identical in their ex-

tents [[1 2] + [[5 6] = [[6
→˓8]
[3 4]] [7 8]] [10
→˓12]]

Outer dimensions match The arrays have the same extent, but
have leading or trailing 1s [1 2] + [[[3 4]]] = [4 6]

[[[1 2]]] + [3 4] = [[[4
→˓6]]]

Single value array One of the addends is an array with
only a single value [1 2 3] + [10] => [11 12

→˓13]

[10] + [1 2 3] => [11 12
→˓13]

Row-by-row The dimensions [0 .. n-1] of
one array match the dimensions of
the other

[[1 2] + [5 6] = [[6 8]
[3 4]] [8
→˓10]]

Grid Array with extent [... 1] and ar-
ray with extent [1 ...] [1 2] + [[3] = [[4 5]

[4]] [5 6]]

Column-by-column The dimensions [1 .. n] of one
array match the dimensions [0 ..
m-1] of the other

[[1 2] + [[5] = [[6 7]
[3 4]] [6]] [9
→˓10]]

Attention: In the Python library, the true_div function is overloaded, not the standard div (integer division)
function. To perform integer division, please use floor(a / b)

add

Warning: doxygenfunction: Cannot find function “librapid::add” in doxygen xml output for project “librapid”
from directory: ./doxygenoutput/xml

sub

Warning: doxygenfunction: Cannot find function “librapid::sub” in doxygen xml output for project “librapid”
from directory: ./doxygenoutput/xml

7.1. LibRapid NDarray 19

librapid, Release 0.2.7

mul

Warning: doxygenfunction: Cannot find function “librapid::mul” in doxygen xml output for project “librapid”
from directory: ./doxygenoutput/xml

div

Warning: doxygenfunction: Cannot find function “librapid::div” in doxygen xml output for project “librapid”
from directory: ./doxygenoutput/xml

array + value

array + array

Warning: doxygenfunction: Cannot find function “librapid::basic_ndarray::operator+” in doxygen xml output
for project “librapid” from directory: ./doxygenoutput/xml

Warning: doxygenfunction: Cannot find function “librapid::basic_ndarray::operator+=” in doxygen xml output
for project “librapid” from directory: ./doxygenoutput/xml

array + scalar

Warning: doxygenfunction: Cannot find function “librapid::basic_ndarray::operator+” in doxygen xml output
for project “librapid” from directory: ./doxygenoutput/xml

Warning: doxygenfunction: Cannot find function “librapid::basic_ndarray::operator+=” in doxygen xml output
for project “librapid” from directory: ./doxygenoutput/xml

array - value

array - array

Warning: doxygenfunction: Cannot find function “librapid::basic_ndarray::operator-” in doxygen xml output for
project “librapid” from directory: ./doxygenoutput/xml

Warning: doxygenfunction: Cannot find function “librapid::basic_ndarray::operator-=” in doxygen xml output
for project “librapid” from directory: ./doxygenoutput/xml

20 Chapter 7. Contents

librapid, Release 0.2.7

array - scalar

Warning: doxygenfunction: Cannot find function “librapid::basic_ndarray::operator-” in doxygen xml output for
project “librapid” from directory: ./doxygenoutput/xml

Warning: doxygenfunction: Cannot find function “librapid::basic_ndarray::operator-=” in doxygen xml output
for project “librapid” from directory: ./doxygenoutput/xml

array * value

array * array

Warning: doxygenfunction: Cannot find function “librapid::basic_ndarray::operator*” in doxygen xml output
for project “librapid” from directory: ./doxygenoutput/xml

Warning: doxygenfunction: Cannot find function “librapid::basic_ndarray::operator*=” in doxygen xml output
for project “librapid” from directory: ./doxygenoutput/xml

array * scalar

Warning: doxygenfunction: Cannot find function “librapid::basic_ndarray::operator*” in doxygen xml output
for project “librapid” from directory: ./doxygenoutput/xml

Warning: doxygenfunction: Cannot find function “librapid::basic_ndarray::operator*=” in doxygen xml output
for project “librapid” from directory: ./doxygenoutput/xml

array / value

array / array

Warning: doxygenfunction: Cannot find function “librapid::basic_ndarray::operator/” in doxygen xml output for
project “librapid” from directory: ./doxygenoutput/xml

Warning: doxygenfunction: Cannot find function “librapid::basic_ndarray::operator/=” in doxygen xml output
for project “librapid” from directory: ./doxygenoutput/xml

7.1. LibRapid NDarray 21

librapid, Release 0.2.7

array / scalar

Warning: doxygenfunction: Cannot find function “librapid::basic_ndarray::operator/” in doxygen xml output for
project “librapid” from directory: ./doxygenoutput/xml

Warning: doxygenfunction: Cannot find function “librapid::basic_ndarray::operator/=” in doxygen xml output
for project “librapid” from directory: ./doxygenoutput/xml

negate

Warning: doxygenfunction: Cannot find function “librapid::basic_ndarray::operator-” in doxygen xml output for
project “librapid” from directory: ./doxygenoutput/xml

Array Manipulation

LibRapid arrays support powerful manipulation routines which support data permanence (as far as possible) and
optimized implementations. They allow for complex algorithms to be implemented easily, and data accesses to be
simplified dramatically.

Attention: Some manipulation routines do NOT result in data permanence, and will result in a copied array.
Please ensure you are aware of this, as it may lead to undesired results

reshape

Warning: doxygenfunction: Cannot find function “librapid::basic_ndarray::reshape” in doxygen xml output for
project “librapid” from directory: ./doxygenoutput/xml

7.2 LibRapid Neural Network

7.2.1 Documentation

22 Chapter 7. Contents

INDEX

L
librapid::test_function (C++ function), 13

23

	What LibRapid is
	What LibRapid is NOT
	Licencing
	Installing the Package
	Using LibRapid
	Using the Documentation
	Contents
	LibRapid NDarray
	LibRapid Neural Network

	Index

